Restoration of cerebrovascular responsiveness to hyperventilation by the oxygen radical scavenger n-acetylcysteine following experimental traumatic brain injury.

نویسندگان

  • E F Ellis
  • L Y Dodson
  • R J Police
چکیده

Previous experiments have shown that, following experimental fluid-percussion brain injury, cyclo-oxygenase-dependent formation of oxygen radicals prevents arteriolar vasoconstriction in response to hyperventilation. The oxygen radical scavengers superoxide dismutase and catalase restore normal reactivity; however, they are not routinely available for clinical use. The present study tested whether n-acetylcysteine (Mucomyst), an agent currently available for acetaminophen toxicity, could be used as a radical scavenger to restore reactivity after brain injury. N-acetylcysteine (163 mg/kg) was given intraperitoneally prior to or 30 minutes after fluid-percussion brain injury (2.6 atm) in cats, and reactivity to hyperventilation was tested 1 hour after injury. The authors found either that pre- or postinjury administration led to normal reactivity. Additional experiments supported the hypothesis that n-acetylcysteine is an oxygen radical scavenger, since it reduced or prevented the free radical-dependent cerebral arteriolar dilation normally induced by the topical application of arachidonic acid or bradykinin. The mechanism by which n-acetylcysteine is effective in trauma may involve direct scavenging of radicals or stimulation of glutathione peroxidase activity. The results suggest that n-acetylcysteine may be useful for treatment of oxygen free radical-mediated brain injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-120: Evaluation of the Antioxidant Effects of N-Acetylcysteine on Ischemia Damage, Apoptosis Incidence and Restoration of Ovarian Activity Following MiceOvary Heterotropic Autotransplantation

Background: Ovarian tissue transplantation is now considered as a procedure to preserve the fertility of young woman patient undergoing cancer therapy. An essential strategy to improve the efficiency of ovarian transplantation is to overcome the initial ischemia reperfusion injury and free radicals production that lead to a significant follicular loss. The aim of this study was to investigate t...

متن کامل

Neuroprotection by genipin against reactive oxygen and reactive nitrogen species-mediated injury in organotypic hippocampal slice cultures.

Genipin, the multipotent ingredient in Gardenia jasmenoides fruit extract (GFE), may be an effective candidate for treatment following stroke or traumatic brain injury (TBI). Secondary injury includes damage mediated by reactive oxygen species (ROS) and reactive nitrogen species (RNS), which can alter the biological function of key cellular structures and eventually lead to cell death. In this ...

متن کامل

A case report of an unexpected traumatic brain injury following severe child abuse

Introduction: Child abuse has been defined as allowing others to cause physical, emotional, and sexual harm, and also physical and emotional pain to a child. The present study was a report on a case of physical and sexual child abuse accompanied by traumatic brain injury (TBI) referred to an emergency department.Case Presentation: A 4-year-old child was rushed into an emergency department...

متن کامل

Neuroprotective Effects of Allicin on Neurological Scores, Blood Brain Barrier Permeability and Brain Edema Following Severe Traumatic Brain Injury in Male Rats: A Behavioral, Biochemical and Histological Study

 Background and purpose: Allicin has a wide range of pharmacological functions, all of which can be demonstrated in anti-inflammatory, antioxidant, antifungal and anti-tumor activities. In this research, we investigated the neuroprotective role of allicin in the process of diffuse traumatic brain injury and its effect on interleukin levels and histological changes in rats. Materials and method...

متن کامل

Effects of sex steroid hormones on neuromedin S and neuromedin U2 receptor expression following experimental traumatic brain injury

Objective(s): Neuroprotective effects of female gonadal steroids are mediated through several pathways involving multiple peptides and receptors after traumatic brain injury (TBI). Two of these peptides are including the regulatory peptides neuromedin U (NMU) and neuromedin S (NMS), and their common receptor neuromedin U2 receptor (NMUR2). This study investigates the effects of physiological do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurosurgery

دوره 75 5  شماره 

صفحات  -

تاریخ انتشار 1991